Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

PROCESAMIENTO DIGITAL DE IMÁGENES MÉDICAS: **IMAGENOLOGÍA** 0754 Asignatura Créditos Ingeniería en Computación Ingeniería Eléctrica Ingeniería de Control y Robótica División Departamento Carrera en que se imparte **Total (horas):** Asignatura: **Horas:** Obligatoria Teóricas 3.0 Semana 5.0 Optativa Prácticas 2.0 16 Semanas 80.0 de elección Aprobado: Consejo Técnico de la Facultad 25 de febrero, 17 de marzo y 16 de junio de 2005 Consejo Académico del Área de las Ciencias 11 de agosto de 2005 Modalidad: Curso, laboratorio. Físico Matemáticas y de las Ingenierías

Objetivo(s) del curso:

Seriación obligatoria antecedente: Ninguna.

Seriación obligatoria consecuente: Ninguna.

Que el alumno aprenda en detalle y con formalidad, el proceso de formación de una imagen médica, su descripción matemática, los aspectos lógicos y morfológicos que caracterizan los patrones de la misma, los métodos más importantes para realzar y restaurar una imagen y transformarla a diferentes espacios, así como los métodos y formatos que existen para almacenarla, transmitirla, codificarla y comprimirla.

Гетагіо	Núm.	Nombre	Horas
	1.	Introducción	4.0
	1.	Introducción	4.0
	2.	Fundamentos de la imagen digital	6.0
	3.	Transformaciones de la imagen	8.0
	4.	Realce de la imagen	8.0
	5.	Restauración óptima	8.0
	6.	Segmentación	8.0
	7.	Codificación y compresión	6.0
			48.0
		Prácticas de laboratorio	32.0
		Total	80.0

1 Introducción

Objetivo: El alumno conocerá las partes principales que componen un sistema de imágenes médicas y se familiarizará con los distintos tipos de imagenología médica.

Antecedentes: Análisis de Sistemas y Señales

Contenido:

- **1.1** Sistemas de imagenología médica. Rayos X, ultrasonido, tomografía computarizada, resonancia magnética, angiografía, tomografía por emisión de positrones, etc.
- 1.2 Unidad de adquisición de datos. Principios y limitaciones: Resolución espacial y ruido.
- 1.3 Unidad de procesamiento de señal e imagen. Principios y consideraciones de diseño.
- **1.4** Unidad de despliegue de la imagen. Presentación de la información visual.
- **1.5** Elementos de percepción visual.

2 Fundamentos de la imagen digital

Objetivo: El alumno conocerá los métodos fundamentales de análisis y modelado de sistemas lineales bidimensionales con especial énfasis en sistemas discretos.

Antecedentes: Análisis de Sistemas y Señales

Contenido:

- **2.1** Caracterización matemática de imágenes
- **2.2** Muestreo y cuantización
- **2.3** Sistemas bidimensionales lineales e invariantes
- **2.4** Convolución bidimensional

3 Transformaciones de la imagen

Objetivo: El alumno conocerá los principales tipos de transformaciones de imágenes y sus aplicaciones en el procesamiento de imágenes médicas.

Antecedentes: Análisis de Sistemas y Señales

Contenido:

- **3.1** Transformada de Fourier
- **3.2** Transformada discreta de Fourier y transformada rápida de Fourier
- **3.3** Convolución circular
- **3.4** Otras transformaciones separables
- **3.5** Transformaciones geométricas

4 Realce de la imagen

Objetivo: El alumno conocerá y será capaz de utilizar las principales técnicas de realce de imágenes médicas.

Antecedentes: Análisis de Sistemas y Señales

Contenido:

- **4.1** Realce punto a punto
 - 4.1.1 Histograma
 - **4.1.2** Ecualización del histograma
 - **4.1.3** Especificación del histograma
- **4.2** Filtrado Espacial
 - **4.2.1** Suavizado
 - **4.2.2** Mejoramiento de la nitidez
 - **4.2.3** Filtros basados en derivadas de la función gaussiana
- **4.3** Filtrado en Frecuencia
 - **4.3.1** Filtros paso-bajas
 - **4.3.2** Filtros paso-altas
 - **4.3.3** Filtros homomórfico

5 Restauración óptima

Objetivo: El alumno será capaz de diseñar técnicas de restauración de imágenes basadas en modelos de degradación y criterios de optimización.

Antecedentes: Análisis de Sistemas y Señales

Contenido:

- **5.1** Modelos de degradación
- **5.2** Matrices circulantes
- **5.3** Planteamiento algebraico del problema de restauración
- **5.4** Filtros de Wiener
- **5.5** Filtros adaptivos
- **5.6** Filtros no lineales

6 Segmentación

Objetivo: El alumno conocerá y será capaz de utilizar las principales técnicas de segmentación de imágenes médicas.

Antecedentes: Análisis de Sistemas y Señales

Contenido:

- **6.1** Detección de discontinuidades
- **6.2** Umbrales

PROCESAMIENTO DIGITAL DE IMÁGENES MÉDICAS: IMAGENOLOGÍA

(4/6)

- **6.3** Segmentación orientada a regiones
- **6.4** Segmentación contextual

7 Codificación y compresión

Objetivo: El alumno conocerá los principales métodos de codificación y compresión de imágenes biomédicas, incluyendo tanto a los estándares establecidos, como a las técnicas del estado del arte.

Antecedentes: Análisis de Sistemas y Señales

Contenido:

- 7.1 Teoría de la información
- **7.2** Compresión libre de errores
- 7.3 Compresión con pérdida numérica
- 7.4 Estándares de codificación y compresión para imágenes médicas
- 7.5 Nuevas tendencias para la compresión y la codificación de imágenes médicas

Bibliografía básica:	Temas para los que se recomienda:
Handbook of Medical Imaging SPIE Press, 2000 Vols. I,II,III	Todos
GONZÁLEZ, R.C, WOODS, P. Digital Image Processing Addison Wesley, 1992	2, 3, 4, 5, 6, 7
PRATT, W.K., WILEY, SONS Digital Image Processing Second Edition 1991	2, 3, 4, 5, 6, 7
JAIN, A.K. Fundamentals of Digital Image Processing Prentice Hall, 1989	2, 3, 4, 5, 6, 7
Introducción al Tratamiento Digital de Imágenes Notas del curso, 1997	2, 3, 4, 5, 6
BOW, S.T., DEKKER, Marcel Pattern Recognition and Image Processing 1992	2, 3, 4, 5, 6, 7

Bibliografía complementaria:	Temas para los que se recomienda:
RONSEFELD, A., KAK, A.C. Digital Picture Processing Press, 1982	2, 3, 4, 5, 6, 7
WAHL, F.W. Digital Image Signal Processing Artech House, 1987	2, 3, 4, 5, 6
HOHNE, K.H. Digital Image Processing in Medicine: Proceedings Springer, 1981	Todos
YOUNG, T.Z. Handbook of Pattern Recognition and Image Processing Academic Press, 1994 Vol. II: Computer Vision	3, 4, 5
YOUNG, T.Z., FU, K. Handbook of Pattern Recognition and Image Processing Academic Press, 1986 Vol. I	2, 4, 6
Medical Imaging, Proceedings SPIE, 1994, 1995, 1996, 1997, 1998, 1999, 2000	Todos
TOMPKINS, W.J. Biomedical Digital Signal Processing Prentice-Hall, 1993	1, 2
COHEN, A. Biomedical Signal Processing CRC Press, 1986	1, 2

PROCESAMIENTO DIGITAL DE IMÁGENES	S MÉDICAS: IMAGENOLOGÍA	(6/6)	GENIER
Sugerencias didácticas: Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios	X	Lecturas obligatorias Trabajos de investigación Prácticas de taller o laboratorio Prácticas de campo Otras	X X X
Forma de evaluar: Exámenes parciales Exámenes finales Trabajos y tareas fuera del aula	X X X	Participación en clase Asistencias a prácticas Otras	XX
Perfil profesiográfico de quienes pued Profesionales con experiencia en cam preferentemente con estudios de posgra	po en el área del procesam	niento digital y manejo de imáge	nes médicas,