Universidad Nacional Autónoma de México FACULTAD DE INGENIERÍA

Programa de Estudio				
SISTEMAS ELÉCTRICOS DE POTENCIA II		1064	8°, 9°	11
Asignatura		Clave	Semestre	Créditos
Ingeniería Eléctrica Ingeniería Eléctrica		Potencia	Ingeniería Eléctrica Electrónica	
División	Departamento Carrera en que se impa		se imparte	
Asignatura:	Horas:		Total (horas):	
Obligatoria X de elección	Teóricas 4.5		Semana 6	5
Optativa	Prácticas 2.0		16 Semanas 104	0.1
Modalidad: Curso, laboratorio	Físico Matemátic	de la Facultad nico del Área de las cas y de las Ingenier	Ciencias 11 de agosto de 2005	rzo y 16 de junio de 2005
Seriación obligatoria antecedente: Ning	una.			
Seriación obligatoria consecuente: Pro Potencia).	tección de Sistemas E	léctricos (s	olo para el modulo o	de Eléctrica de
Objetivo(s) del curso: El alumno podrá calcular los parámetros y equivalentes de transformadores, autotrana eléctricas operando en régimen desequilibre Analizará el comportamiento de las redes	sformadores y generado rado.	ores para su	representación en el a	nálisis de redes

Temario

potencia desequilibrados.

Núm.	Nombre	HORAS
1.	Sistemas de potencia desequilibrados	6.0
2.	Método de las componentes simétricas	6.0
3.	Parámetros de las líneas de transmisión para secuencia positiva, negativa y cero	9.0
4.	Circuitos equivalentes de transformadores y autotransformadores para secuencia positiva, negativa y cero	9.0

para el cálculo de sobrecorrientes y sobretensiones. Conocerá las normatividad relacionada con los sistemas de

5.	Cortocircuito trifásico en las terminales de un generador operando en vacío	9.0
6.	Análisis de sistemas de potencia operando en régimen permanente desequilibrado. Problema de sobrecorrientes	12.0
7.	Análisis de sistemas de potencia operando en régimen permanente desequilibrado. Problema de sobretensiones	12.0
8.	Protección contra sobretensiones. Coordinación de aislamiento	9.0
		72.0
	Prácticas de laboratorio	32.0
	Total	104.0

1 Sistemas de potencia desequilibrados

Objetivo: El alumno conocerá las características de operación de un sistema eléctrico de potencia desequilibrado y la importancia que esto representa tanto para el propio sistema como para los usuarios de energía eléctrica y, sobre todo, para la economía del país.

Contenido:

- **1.1** Sistemas de potencia desequilibrados
 - **1.1.1** Causas por las que un sistema de potencia se desequilibra
 - **1.1.2** Efectos de la operación desequilibrada de un sistema de potencia sobre el propio sistema, los usuarios y la economía de un país, en general
 - 1.1.3 Análisis de un sistema desbalanceado por el método directo

2 Método de las componentes simétricas

Objetivo: El alumno aprenderá el método de las componentes simétricas y sus ventajas para el análisis de sistemas desbalanceados.

Contenido:

- **2.1** Método de las componentes simétricas
 - **2.1.1** Definición de las componentes simétricas de secuencia positiva, negativa y cero
 - **2.1.2** Obtención de un conjunto de fasores desbalanceados a partir de sus componentes simétricas
 - **2.1.3** Obtención de las componentes simétricas de un conjunto de fasores desbalanceados

3 Parámetros de las líneas de transmisión para secuencia positiva, negativa y cero

Objetivo: El alumno calculará los parámetros de las líneas de transmisión, aéreas y subterráneas, correspondientes a las componentes simétricas de secuencia positiva, negativa y cero.

Contenido:

- 3.1 Impedancias serie y reactancia capacitiva de líneas aéreas para secuencia positiva, negativa y cero
 - **3.1.1** Sin cables de guarda
 - **3.1.2** Con cables de guarda
- **3.2** Impedancias serie y reactancia capacitiva de cables subterráneos para secuencia positiva, negativa y cero

4 Circuitos equivalentes de transformadores y autotransformadores para secuencia positiva, negativa y cero

Objetivo: El alumno conocerá los circuitos equivalentes de los transformadores y autotransformadores para secuencia positiva, negativa y cero. Asimismo conocerá la aplicación de los bancos de tierra y sus circuitos correspondientes.

Contenido:

- **4.1** Circuitos equivalentes de transformadores y autotransformadores
 - **4.1.1** Circuitos de secuencia positiva
 - **4.1.2** Circuitos de secuencia negativa
 - **4.1.3** Circuitos de secuencia cero
- **4.2** Bancos de tierra estrella delta y zig-zag
 - **4.2.1** Circuitos equivalentes de secuencia cero

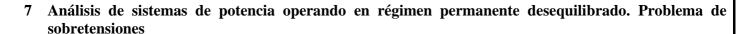
5 Cortocircuito trifásico en las terminales de un generador operando en vacío

Objetivo: El alumno conocerá el comportamiento de un generador al ocurrir un cortocircuito trifásico en sus terminales y el significado de las reactancias: subtransitoria, transitoria y síncrona de la máquina.

Contenido:

- **5.1** Cortocircuito trifásico en las terminales de un generador operando en vacío
 - **5.1.1** Análisis de la corriente de cortocircuito
- **5.2** Reactancias del generador durante el cortocircuito trifásico
 - **5.2.1** Reactancias: subtransitoria, transitoria y síncrona

6 Análisis de sistemas de potencia operando en régimen permanente desequilibrado. Problema de sobrecorrientes


Objetivo: El alumno tendrá los conocimientos para calcular y analizar las corrientes que circulan en un sistema de potencia operando en condiciones desequilibradas, tanto manualmente como utilizando la computadora. Asimismo podrá calcular la capacidad interruptiva o de cortocircuito de los interruptores y conocerá las normas correspondientes.

SISTEMAS ELÉCTRICOS DE POTENCIA II

(4/5)

Contenido:

- **6.1** Análisis de fallas balanceadas (fallas trifásicas)
 - **6.1.1** Fallas trifásicas
 - **6.1.2** Método Z-Bus para el cálculo de cortocircuito
- **6.2** Análisis de fallas desbalanceadas directas y a través de impedancias
 - **6.2.1** Fallas: de fase a tierra, entre dos fases y dos fases tierra
 - **6.2.2** Solución por medio de computadoras
 - **6.2.3** Normatividad relativa a las fallas de energía eléctrica

Objetivo: El alumno tendrá los conocimientos para calcular y analizar las causas que provocan sobretensiones y conocerá las normas aplicables en estas condiciones.

Contenido:

- 7.1 Sobretensiones en los sistemas de potencia
 - **7.1.1** Sobretensiones debidas a fallas a tierra
 - **7.1.2** Sobretensiones por ferrorresonancia
 - **7.1.3** Sobretensiones por maniobra de interruptores
 - **7.1.4** Sobretensiones por descargas atmosféricas
 - **7.1.5** Propagación de sobretensiones por las líneas de transmisión
 - **7.1.6** Análisis de sobretensiones por medio de la computadora
 - **7.1.7** Normatividad relativa a las sobretensiones

8 Protección contra sobretensiones. Coordinación de aislamiento

Objetivo: El alumno conocerá los diferentes medios con los que se cuenta para proteger a los sistemas de potencia contra las sobretensiones y las características de los aislamientos para poder coordinar la instalación segura de los equipos que componen el sistema, asimismo conocerá la normatividad aplicable.

Contenido:

- **8.1** Protección contra sobretensiones
 - 8.1.1 Apartarrayos
 - **8.1.2** Cables de guarda
- **8.2** Coordinación de aislamiento
 - **8.2.1** Coordinación de aislamiento de los componentes del sistema
 - **8.2.2** Método estadístico de coordinación de aislamiento
 - **8.2.3** Normatividad relativa a la protección contra sobretensiones

SISTEMAS ELÉCTRICOS DE POTENCIA II	(5/5)
Bibliografía básica:	Temas para los que se recomienda:
GRAINGER y Stevenson Análisis de Sistemas de Potencia México McGraw-Hill, 1996	Todos
VIQUEIRA L., Jacinto Redes Eléctricas II Facultad de Ingeniería, UNAM	Todos
Bibliografía complementaria:	Temas para los que se recomienda:
GLOVER J., D y Sarma Sistemas de Potencia, Análisis y Diseño 3a. edición México Thompson	Todos
ANDERSON, P. Analysis of Faulted Power Systems USA Iowa State University Press, 1978	Todos
Sugerencias didácticas: Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios	Lecturas obligatorias Trabajos de investigación Prácticas de taller o laboratorio Prácticas de campo Otras
Forma de evaluar: Exámenes parciales Exámenes finales Trabajos y tareas fuera del aula Perfil profesiográfico de quienes pueden impartir la asignatu	Participación en clase Asistencias a prácticas Otras X X

Los profesores que impartan esta asignatura deben tener un conocimiento amplio de circuitos eléctricos, máquinas síncronas, transformadores y tener experiencia en relación con la operación tanto equilibrada como desequilibrada de los sistemas eléctricos de potencia.