Universidad Nacional Autónoma de México FACULTAD DE INGENIERÍA

PROGRAMA DE ESTUDIO Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del

	BIOMECÁNICA		1009	8°, 9°		
	Asignatura:		Clave	Semestre	Crédite	
Ingeniería	Mecánica e Industrial	Ingeniería Mecánio	ea	Ingeniería Mecánica		
	División	Departamento		Carrera(s) en que se imparte		
A	signatura:	Horas:		Total (horas):		
O	bligatoria	Teóricas 4.0		Semana	6.0	
O	ptativa X	Prácticas 2.0		16 Semanas	96.0	
Modalidad: C	urso, laboratorio					
Seriación obli	gatoria antecedente: Nin	guna				
Seriación obli	gatoria consecuente: Nin	iguna				
7011001011 021	5	.8				
Conocer los a nodelos de la	operación de los diferent	nto mecánico del cuerpo es sistemas, esto orientado		-		
modelos de la sustitutos y de	operación de los diferent apoyo	-		-	sistemas artific	
Conocer los a modelos de la sustitutos y de	operación de los diferent apoyo Nombre	es sistemas, esto orientado		-	sistemas artific	
Conocer los a nodelos de la sustitutos y de Femario Núm. 1.	operación de los diferent apoyo Nombre Conceptos generales de	es sistemas, esto orientado		-	Horas 8.0	
Conocer los a modelos de la sustitutos y de Femario Núm. 1. 2.	Nombre Conceptos generales de Elementos estructurales	es sistemas, esto orientado biomecánica del cuerpo humano (CH)		-	HORAS 8.0 12.0	
Conocer los a nodelos de la sustitutos y de Femario Núm. 1.	operación de los diferent apoyo Nombre Conceptos generales de	es sistemas, esto orientado biomecánica del cuerpo humano (CH)		-	Horas 8.0	
Conocer los a modelos de la sustitutos y de Femario Núm. 1. 2.	Nombre Conceptos generales de Elementos estructurales	es sistemas, esto orientado biomecánica del cuerpo humano (CH)		-	HORAS 8.0 12.0	
Conocer los a modelos de la sustitutos y de Vúm. Núm. 1. 2. 3.	Nombre Conceptos generales de Elementos estructurales Modelado estático, ciner	es sistemas, esto orientado biomecánica del cuerpo humano (CH) mática y dinámico		-	HORAS 8.0 12.0 12.0	
Conocer los a modelos de la sustitutos y de Vúm. Núm. 1. 2. 3. 4.	Nombre Conceptos generales de Elementos estructurales Modelado estático, ciner Biomecánica articular	es sistemas, esto orientado biomecánica del cuerpo humano (CH) mática y dinámico mna Vertebral (CV)		-	HORAS 8.0 12.0 12.0 6.0	
Conocer los a modelos de la sustitutos y de Vúm. Núm. 1. 2. 3. 4. 5.	Nombre Conceptos generales de Elementos estructurales Modelado estático, ciner Biomecánica articular Biomecánica de la Colu	biomecánica del cuerpo humano (CH) mática y dinámico mna Vertebral (CV) diovasculares		-	HORAS 8.0 12.0 12.0 6.0 6.0	

BIOMECÁNICA (2/4)

1 Conceptos generales de biomecánica

Objetivo: Describir el concepto de biomecánica, su connotación, alcances y prospectiva

GENIER

Contenido:

- 1.1 Leyes de la mecánica
- **1.2** Conceptos de estática, dinámica y mecanismos
- **1.3** Glosario de anatomía
- **1.4** Conceptos estructurales del cuerpo humano

2 Elementos estructurales del cuerpo humano (CH)

Objetivo: Describir la operación de los diferentes elementos estructurales del cuerpo humano

Contenido:

- **2.1** Sistema esquelético
- 2.2 Sistema de eslabones del CH
- **2.3** Articulaciones
- **2.4** Características antropométricas
- **2.5** Biomecánica de huesos, cartílagos, ligamentos y tendones
- **2.6** Biomecánica de los músculos

3 Modelado estático, cinemático y dinámico

Objetivo: Desarrollar los modelos estáticos, cinemáticos y dinámicos de los elementos estructurales del cuerpo humano, así como los métodos empleados en la medición de desplazamientos y cargas

Contenido:

- 3.1 Determinación de fuerzas. Sistemas estáticamente determinados e indeterminados
- **3.2** Métodos para la medida de fuerzas
- 3.3 Análisis del movimiento mediante fotogrametría
- 3.4 Análisis del movimiento mediante ultrasonido
- 3.5 Definición del modelo de eslabones del CH
- **3.6** Análisis dinámico del movimiento
- 3.7 Biomecánica de la marcha

4 Biomecánica articular

Objetivo: Analizar y desarrollar los modelos que permitan la descripción de las principales articulaciones del cuerpo humano, así como de las prótesis empleadas para éstas

Contenido:

- **4.1** Las articulaciones y su operación
- **4.2** Tribología de las articulaciones
- **4.3** Articulación de la cadera
- **4.4** Articulación de la rodilla
- **4.5** Otras articulaciones
- **4.6** Prótesis en articulaciones

BIOMECÁNICA (3/4)

5 Biomecánica de la Columna Vertebral (CV

Objetivo: Describir el comportamiento mecánico de la columna vertebral así como conocer los efectos que las diferentes patologías tienen sobre ésta y los métodos de corrección y reparación.

Contenido:

- **5.1** Función, elementos constituyentes y anatomía de la columna vertebral
- **5.2** Unidad funcional de la CV
- **5.3** Deterioro de la CV
- **5.4** Biomecánica del raquis
- **5.5** Técnicas de reparación

6 Dinámica de fluidos cardiovasculares

Objetivo: Conocer los principios de la dinámica de fluidos aplicada al sistema cardiovascular, con la finalidad de desarrollar los modelos asociados, orientado esto al desarrollo de sistemas artificiales.

Contenido:

- **6.1** Modelos mecánicos cardiacos
- **6.2** Análisis a través de principios hemodinámicas
- **6.3** Redes microvasculares
- **6.4** Sistemas extracorpóreos
- **6.5** Dinámica de las válvulas
- **6.6** Modelado de la mecánica de prótesis vasculares
- **6.7** Dispositivos de asistencia cardiaca
- **6.8** Fisiología del sistema circulatorio
- **6.9** Interacción flujo-estructura en el flujo sanguíneo
- **6.10** Propagación de ondas e interacción de la sangre con la pared ventricular izquierda
- **6.11** Mecánica del flujo en el lado izquierdo del músculo cardiaco
- **6.12** Mecánica ventricular en la fase de expulsión
- **6.13** Modelado de válvulas artificiales
- **6.14** Transporte de masa en grandes arterias y a través de la pared arterial
- **6.15** Modelado de flujo considerando arterias deformables

Bibliografía básica:

Knudson D.

Fundamentals of Biomechanics,

Kluver Academia/Plenum Publishers, USA

Verdonck P.

Intra and Extracorporeal Cardiovascular Fluid Dynamics

BIOMECÁNICA	(4/4	1)
DIOMECANICA	(T / T	• ,

Computational Mechanics Publications, USA, 1998

Bibliografía complementaria:

Proubasta I., Gil Mur J., Planell J. Fundamentos de Biomecánica y biomateriales Valenta J. Biomechanics. Elsevier, USA, 1993

Sugerencias didácticas:

X	Lecturas obligatorias	X
X	Trabajos de investigación	X
X	Prácticas de taller o laboratorio	X
X	Prácticas de campo	
X	Otras	
	X X X	XTrabajos de investigaciónXPrácticas de taller o laboratorioXPrácticas de campo

Forma de evaluar:

Exámenes parciales		Participación en clase	X
Exámenes finales		Asistencias a prácticas	
Trabajos y tareas fuera del aula	X	Proyecto final	X

Perfil profesiográfico de quienes pueden impartir la asignatura :

Profesional de la ingeniería o de la física con profundos conocimientos en mecánica del medio continuo y experiencia en el desarrollo de proyectos de biomecánica.