Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

Aprobado por el Consejo Técnico de la Facultad de Ingeniería en su sesión ordinaria del 19 de noviembre de 2008

ÁLGEBRA LINEAL Asignatura		O062 Clave	Semestre	09 Créditos
Ciencias Básicas División	Matemáticas Coordinación		Ingeniería en Telecomunicaciones Carrera(s) en que se imparte	
Asignatura:	Horas:		Total (horas):	
Obligatoria X	Teóricas 4.5		Semana 4.	5
Optativa	Prácticas 0.0		16 Semanas 72	.0

Modalidad: Curso

Seriación obligatoria antecedente: Álgebra

Seriación obligatoria consecuente: Ninguna

Objetivo(s) del curso:

El alumno analizará los conceptos básicos del álgebra lineal, ejemplificándolos mediante sistemas ya conocidos, haciendo énfasis en el carácter general de los resultados, a efecto de que adquiera elementos que le permitan fundamentar diversos métodos empleados en la resolución de problemas de ingeniería.

Temario

N úм. 1.	Nombre Introducción al álgebra lineal	Horas 4.5
2.	Espacios vectoriales	16.5
3.	Transformaciones lineales	21.0
4.	Espacios con producto interno	15.0
5.	Operadores lineales en espacios con producto interno	15.0
		72.0
	Prácticas de laboratorio	0.0
	Total	72.0

ÁLGEBRA LINEAL (2 / 5)

1 Introducción al álgebra lineal

Objetivo: El alumno identificará acontecimientos relevantes de la historia del álgebra lineal, y algunas de las aplicaciones del álgebra lineal en ingeniería.

Contenido:

- **1.1** Historia del álgebra lineal.
- **1.2** Aplicaciones del álgebra lineal en algunos campos de la ingeniería.

2 Espacios vectoriales

Objetivo: El alumno identificará un espacio vectorial y analizará sus características fundamentales.

Contenido:

- **2.1** Definición de espacio vectorial. Propiedades elementales de los espacios vectoriales. Subespacios. Isomorfismos entre espacios vectoriales.
- **2.2** Combinación lineal. Dependencia lineal. Conjunto generador de un espacio vectorial. Base y dimensión de un espacio vectorial. Coordenadas de un vector respecto a una base ordenada. Matriz de transición.
- **2.3** Espacio renglón, espacio columna y rango de una matriz.
- **2.4** El espacio vectorial de las funciones reales de variable real. Subespacios de dimensión finita. Dependencia lineal de funciones. Criterio del wronskiano.

3 Transformaciones lineales

Objetivo: El alumno aplicará el concepto de transformación lineal y sus propiedades en la resolución de problemas que los involucren.

Contenido:

- **3.1** Definición de transformación. Dominio, codominio, núcleo y recorrido de una transformación.
- **3.2** Definición de transformación lineal. Los subespacios núcleo y recorrido de una transformación lineal. Caso de dimensión finita: relación entre las dimensiones del dominio, recorrido y núcleo de una transformación lineal.
- 3.3 Matriz asociada a una transformación lineal con dominio y codominio de dimensión finita.
- **3.4** Álgebra de las transformaciones lineales: definición y propiedades de la adición, la multiplicación por un escalar y la composición de transformaciones.
- **3.5** La inversa de una transformación lineal.
- **3.6** Efectos geométricos de las transformaciones lineales.
- **3.7** Definición de operador lineal. Definición y propiedades de valores y vectores propios de un operador lineal. Definición de espacios característicos. Caso de dimensión finita: polinomio característico, obtención de valores y vectores propios.
- 3.8 Matrices similares y sus propiedades. Diagonalización de la matriz asociada a un operador lineal.

ÁLGEBRA LINEAL (3 / 5)

4 Espacios con producto interno

Objetivo: El alumno determinará si una función es un producto interno y analizará sus características fundamentales a efecto de aplicarlo en la resolución de problemas de espacios vectoriales.

Contenido:

- **4.1** Definición de producto interno y sus propiedades elementales.
- **4.2** Definición de norma de un vector y sus propiedades, vectores unitarios. Desigualdad de Cauchy-Schwarz. Definición de distancia entre vectores y sus propiedades. Definición de ángulo entre vectores. Vectores ortogonales.
- **4.3** Conjuntos ortogonales y ortonormales. Independencia lineal de un conjunto ortogonal de vectores no nulos. Coordenadas de un vector respecto a una base ortogonal y respecto a una base ortonormal. Proceso de ortogonalización de Gram-Schmidt.
- **4.4** Complemento ortogonal. Proyección de un vector sobre un subespacio. El teorema de proyección.
- **4.5** Mínimos cuadrados.

5 Operadores lineales en espacios con producto interno

Objetivo: El alumno analizará las características principales de los operadores lineales definidos en espacios con producto interno y su aplicación a la resolución de problemas de ingeniería.

Contenido:

- **5.1** Definición y propiedades elementales del adjunto de un operador.
- **5.2** Definición y propiedades elementales de operador normal.
- **5.3** Definición y propiedades elementales de operadores simétricos, hermitianos, antisimétricos, antihermitianos, ortogonales y unitarios, y su representación matricial.
- **5.4** Teorema espectral.
- **5.5** Formas cuádricas. Aplicación de los valores propios y los vectores propios de matrices simétricas a las formas cuádricas.

Todos

sica: Ten	mas para los que se recomienda:
Tod	dos
sus Aplicaciones	
007	
y sus Aplicaciones	dos

NAKOS, George y JOYNER, David Álgebra Lineal con Aplicaciones México Thomson Editores, 1999 ÁLGEBRA LINEAL (4 / 5)

SOLAR G.,	Eduardo y SPEZIALE de G., Leda	Todos

Apuntes de Álgebra Lineal

3a edición México

Limusa-Facultad de Ingeniería - UNAM, 1996

BELL, E. T.

Historia de las Matemáticas 2a edición en español

México

Fondo de Cultura Económica, 1995

Bibliografía complementaria:

ANTON, H. 2, 3, 4 y 5

Introducción al Álgebra Lineal

3a edición

México Limusa, 2003

AYRES, Frank Jr. 2, 3, 4 y 5

Álgebra Moderna

México

McGraw-Hill, 1991

CÁRDENAS, Humberto, et al. 2

Álgebra Superior

2a edición

México

Trillas, 1990

GODÍNEZ C., Héctor y HERRERA C., Abel Todos

Álgebra Lineal Teoría y Ejercicios

México

Facultad de Ingeniería, UNAM, 1987

GROSSMAN, S. I. 2, 3, 4 y 5

Álgebra Lineal

5a edición

México

McGraw-Hill, 1996

ÁLGEBRA LINEAL	(5/5)	GENIER
POOLE, David Álgebra Lineal 2a edición México Thomson Editores, 2006	Todos	
SPEZIALE SAN VICENTE, Leda Teorema de Proyección 2a edición México Facultad de Ingeniería, UNAM, 2002	4	
WILLIAMS, Gareth Linear Algebra with Applications 5th edition Jones and Bartlett Publishers, 2005	2, 3, 4 y 5	
SPEZIALE SAN VICENTE, Leda Transformaciones lineales 1a edición México Facultad de Ingeniería, UNAM, 2007	3	
Sugerencias didácticas: Exposición oral Exposición audiovisual Ejercicios dentro de clase Ejercicios fuera del aula Seminarios	X Lecturas obligatorias X Trabajos de investigación X Prácticas de taller o laboratorio Y Prácticas de campo Otras: Empleo de nuevas tecnologías	X X X
Forma de evaluar: Exámenes parciales Exámenes finales Trabajos y tareas fuera del aula	X Participación en clase X Asistencias a prácticas Otras	X
Perfil profesiográfico de quienes pued	len impartir la asignatura	
	s, Física o carreras cuyo contenido en el área de matemática osgrado, contar con experiencia docente o haber participado ocente.	