

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

ESTRUCTURAS ISOSTÁTICA	AS 0275	3	9	
Asignatura	Clave	Semestre	Créditos	
INGENIERÍAS CIVIL Y GEOMÁTICA	ESTRUCTURAS	INGENI	INGENIERÍA CIVIL	
División	Departamento	Licenc	Licenciatura	
Asignatura:	Horas/semana:	Horas/sem	Horas/semestre:	
Obligatoria X	Teóricas 4.5	Teóricas	72.0	
Optativa	Prácticas 0.0	Prácticas	0.0	
	Total 4.5	Total	72.0	
Modalidad: Curso teórico				
Seriación obligatoria antecedente: Est	ática			
Seriación obligatoria consecuente: Me	cánica de Materiales I			
Objetivo(s) del curso:				
El alumno realizará el análisis de los sist	emas estructurales isostáticos	s más comunes en ingeni	ería civil, par	
determinar y graficar sus diagramas de e	lementos mecánicos, emplear	ndo diversos métodos.	_	

Temario

NÚM.	NOMBRE	HORAS		
1.	Introducción a la ingeniería estructural	4.5		
2.	Formas y propiedades geométricas de secciones transversales de elementos			
	estructurales	7.5		
3.	Acciones gravitacionales sobre estructuras	7.5		
4.	Equilibrio en sistemas estructurales	7.5		
5.	Elementos mecánicos en vigas y marcos	22.5		
6.	Armaduras	9.0		
7.	Arcos	7.5		
8.	Cables	6.0		
		72.0		
	Actividades prácticas	0.0		
	Total	72.0		

1 Introducción a la ingeniería estructural

Objetivo: El alumno identificará los tipos de elementos y formas estructurales más comunes para describir su función dentro de una obra de ingeniería civil.

Contenido:

- **1.1** El campo de la ingeniería estructural.
- **1.2** Formas estructurales más comunes en la ingeniería civil: edificios urbanos e industriales, puentes, estadios, recipientes, antenas, chimeneas, muelles, etc.
- 1.3 Elementos estructurales básicos y sus funciones: columnas, vigas, muros, losas, cables, etc.
- 1.4 Objetivos del análisis estructural. Estructuras isostáticas e hiperestáticas y métodos de solución.
- 1.5 La evolución de las herramientas de cómputo y la ingeniería estructural.

2 Formas y propiedades geométricas de secciones transversales de elementos estructurales

Objetivo: El alumno aplicará los conceptos básicos de estática para calcular las propiedades geométricas de las secciones transversales más comúnmente usadas en la ingeniería estructural.

Contenido:

- 2.1 Centroides de secciones estructurales.
- 2.2 Momentos y productos de inercia. Radios de giro.
- **2.3** Teorema de ejes paralelos.
- 2.4 Secciones compuestas. Uso de catálogos de secciones.

3 Acciones gravitacionales sobre estructuras

Objetivo: El alumno comprenderá el origen y las características de las cargas gravitacionales que actúan sobre las estructuras, para determinar sus efectos sobre estas.

Contenido:

- 3.1 Cargas muertas.
- 3.2 Pesos volumétricos de los materiales más usuales en la construcción.
- 3.3 Idealización de cargas: concentradas, lineales, distribuidas en una superficie.
- **3.4** Áreas tributarias.
- 3.5 Cargas vivas.
- **3.6** Cargas vivas según el Reglamento de Construcciones para el D. F.
- 3.7 Otras cargas vivas.
- 3.8 Análisis de cargas gravitacionales en edificaciones.
- 3.9 Solución de ejemplos con computadora.

4 Equilibrio en sistemas estructurales

Objetivo: El alumno aplicará los conceptos fundamentales de la estática para calcular las reacciones en los apoyos de estructuras isostáticas e identificar cuando una estructura es hiperestática o inestable.

Contenido:

- 4.1 Aplicaciones del principio de superposición.
- **4.2** Identificación de estructuras inestables, isostáticas e hiperestáticas.
- 4.3 Cálculo de reacciones en estructuras isostáticas.

5 Elementos mecánicos en vigas y marcos

Objetivo: El alumno aplicará el principio del equilibrio para obtener los diagramas de elementos mecánicos en vigas y marcos, empleando diversos métodos.

Contenido:

5.1 Definición de elementos mecánicos: fuerza axial, fuerza cortante, momento flexionante, momento

- torsionante y la relación entre ellos.
- **5.2** Convención de signos. Sistema de coordenadas globales y locales.
- **5.3** Elementos mecánicos en vigas y marcos. Trazo de diagramas.
- 5.4 Método de ecuaciones.
- 5.5 Método de suma de áreas.
- 5.6 Método de superposición.
- 5.7 Solución de ejemplos con computadora.

6 Armaduras

Objetivo: El alumno aplicará el principio del equilibrio para determinar las fuerzas axiales en armaduras, empleando los métodos de nudos y secciones.

Contenido:

- **6.1** Hipótesis para el modelo de armaduras.
- **6.2** Funcionamiento estructural y tipos de armaduras.
- **6.3** Estabilidad de armaduras.
- 6.4 Método de los nudos.
- 6.5 Método de las secciones.
- **6.6** Solución de ejemplos con computadora.

7 Arcos

Objetivo: El alumno aplicará el principio del equilibrio para determinar los diagramas de elementos mecánicos en arcos.

Contenido:

7.1 Elementos mecánicos en arcos y trazo de diagramas.

8 Cables

Objetivo: El alumno aplicará el principio del equilibrio para determinar las fuerzas de tensión en cables sometidos a cargas concentradas y distribuidas.

Contenido:

- **8.1** Cables flexibles e inextensibles.
- **8.2** Cables con cargas concentradas.
- 8.3 Cable parabólico.
- 8.4 Catenaria.
- 8.5 Solución de ejemplos con computadora.

Bibliografía básica

Temas para los que se recomienda:

HIBBELER, Russel

Análisis estructural

1, 3, 4, 5, 6, 7 y 8

8a. edición

México

Pearson, 2008

HIBBELER, Russel

Mecánica vectorial para ingenieros. Estática

2, 5, 6 y 8

12a. edición

México

Pearson, 2004

MCCORMAC, Jack

Análisis de estructuras, método clásico y matricial

1, 3, 4, 5, 6, 7 y 8

4a edición México

Alfaomega, 2010

MONROY MIRANDA, F.

Ejemplos de estructuras isostáticas, (enunciados con 4, 5, 6, 7 y 8

respuestas) México

Facultad de Ingeniería, UNAM, 2000

MONROY MIRANDA, F., RODRÍGUEZ VEGA, M. Á.

Problemas propuestos de la materia estructuras isostáticas 4, 5, 6, 7 y 8

México

Facultad de Ingeniería, UNAM, 2000

RODRÍGUEZ VEGA, M. Á.

Serie de ejercicios de elementos mecánicos en estructuras 4, 5, 6, 7 y 8

México

Facultad de Ingeniería, UNAM, 2010

Bibliografía complementaria

Temas para los que se recomienda:

ASAMBLEA LEGISLATIVA DEL DISTRITO FEDERAL

Reglamento de Construcciones para el Distrito Federal 1 y 3

México

Gaceta Oficial del Distrito Federal, 2004

ASAMBLEA LEGISLATIVA DEL DISTRITO FEDERAL

Normas Técnicas Complementarias sobre Criterios y Acciones 1 y 3

para el Diseño Estructural de las Edificaciones México

Gaceta Oficial del Distrito Federal, 2004

MELI PIRALLA, R.

Diseño estructural 1 y 3

2a edición

México

Limusa, 2010

MURRIETA NECOECHEA, A., BACELIS ESTEVA, R., et al.

Aplicaciones de la estática 1, 4, 5, 6, 7 y 8

2a edición

México

Limusa, 1990

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios	X	Búsqueda especializada en internet	X
Uso de software especializado	X	Uso de redes sociales con fines académicos	X
Uso de plataformas educativas	X		
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

El profesor deberá ser Ingeniero Civil con experiencia profesional media, orientado hacia el área de estructuras, que posea las siguientes aptitudes y actitudes: habilidad para el modelado y análisis de sistemas estructurales. Dedicación a la docencia, capacidad de transmitir y actualizar conocimientos, facilidad para relacionarse con alumnos, colaboradores y académicos, capacidad de trabajo y creatividad en las tareas académicas.