

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

MECANICA DE SUELOS		<u> </u>		9
Asignatura	C	Clave	Semestre	Créditos
INGENIERÍAS CIVIL Y GEOMÁTICA	GEOTECNIA		INGENIEI	RÍA CIVIL
División	Departamento		Licencia	ntura
Asignatura: Obligatoria X	Horas/semana: Teóricas 4.5		Horas/seme Teóricas	stre: 72.0
Optativa	Prácticas 0.0		Prácticas	0.0
	Total 4.5		Total	72.0

Modalidad: Curso teórico

Seriación obligatoria antecedente: Ninguno

Seriación obligatoria consecuente: Cimentaciones

Objetivo(s) del curso:

El alumno será capaz de evaluar la resistencia al corte de diferentes tipos de suelo por diferentes métodos. Conocida la resistencia al corte, calculará empujes de suelos sobre elementos de retención. Asimismo, cuantificará el factor de seguridad de taludes para diferentes tipos de suelo. Una vez conocida la resistencia al corte de un suelo, el alumno calculará la capacidad de carga del terreno de cimentación.

Temario

NÚM.	NOMBRE	HORAS
1.	Introducción	1.5
2.	Resistencia al esfuerzo cortante de los suelos	20.0
3.	Empuje de suelos sobre elementos de retención	20.0
4.	Capacidad de carga en suelos	15.5
5.	Estabilidad de taludes en suelos	15.0
		72.0
	Actividades prácticas	0.0
	Total	72.0

1 Introducción

Objetivo: El alumno identificará la importancia y la aplicación de la resistencia al esfuerzo cortante de los suelos, para varios casos de interés en la ingeniería, como son muros de retención, estabilidad de taludes, capacidad de carga, etcétera.

Contenido:

- **1.1** Importancia de la resistencia al esfuerzo en el comportamiento del terreno de cimentación y en las obras de tierra.
- **1.2** Aplicaciones de la resistencia al esfuerzo cortante de los suelos en el análisis y diseño de elementos de retención, de cimentaciones y de obras de tierra.

2 Resistencia al esfuerzo cortante de los suelos

Objetivo: El alumno calculará la resistencia al esfuerzo cortante de un suelo, a partir de datos de pruebas de campo y laboratorio.

Contenido:

- 2.1 Estado de esfuerzo de un elemento de suelo. Cálculo del esfuerzo normal y cortante en un plano.
- 2.2 Teorías de falla en suelos. Envolventes de resistencia en términos de esfuerzos totales y efectivos. Concepto de succión.
- **2.3** Determinación de la resistencia al esfuerzo cortante a partir de datos de laboratorio para diferentes condiciones de saturación.
- **2.4** Determinación de la resistencia al esfuerzo cortante a partir de datos de campo para diferentes condiciones de saturación.
- 2.5 Trayectorias de esfuerzo. Estado crítico.
- 2.6 Propiedades mecánicas de los suelos compactados. Pruebas de laboratorio y campo. Equipo de compactación.
- **2.7** Ejemplos demostrativos.

3 Empuje de suelos sobre elementos de retención

Objetivo: El alumno cuantificará los esfuerzos y el empuje de suelos sobre elementos de retención con la finalidad de poder llegar a dimensionar este tipo de obras.

Contenido:

- **3.1** Empleo de elementos de retención en obras civiles.
- 3.2 Estados plásticos de equilibrio. Teorías para el cálculo de empuje de suelos sobre elementos de retención lisos y rugosos (Rankine, Coulomb, etcétera). Importancia del drenaje en la reducción de la presión hidráulica sobre el elemento de contención.
- 3.3 Análisis de estabilidad y diseño geotécnico de muros de retención.
- **3.4** Empuje de suelos sobre ataguías, ademes y tablestacas.
- 3.5 Técnicas de mejoramiento de suelos en elementos de retención (nuevas tecnologías y nuevos materiales).

4 Capacidad de carga en suelos

Objetivo: El alumno realizará el diseño geotécnico de una cimentación con base en las teorías de capacidad de carga de los suelos.

Contenido:

- 4.1 Introducción. Casos históricos de fallas por capacidad de carga.
- **4.2** Solución al problema de capacidad de carga de cimentaciones, usando el enfoque de la teoría de plasticidad.
- **4.3** Capacidad de carga de cimientos superficiales en suelos con respuesta cohesiva-friccionante.
- **4.4** Capacidad de carga de cimientos superficiales en suelos con respuesta cohesiva.
- 4.5 Capacidad de carga de cimientos superficiales en suelos con respuesta friccionante.

4.6 Capacidad de carga de pilotes y pilas trabajando por punta y/o fricción.

5 Estabilidad de taludes en suelos

Objetivo: El alumno evaluará la seguridad de taludes de suelo bajo diferentes condiciones hidráulicas y cargas externas.

Contenido:

- 5.1 Introducción. Mecanismos de falla.
- **5.2** Análisis de taludes de suelos con respuesta cohesiva-friccionante.
- **5.3** Análisis de taludes de suelos con respuesta friccionante.
- 5.4 Análisis de taludes de suelos con respuesta cohesiva.

Bibliografía básica	Temas para los que se recomienda:
DAS, Braja M.	
Fundamentos de Ingeniería Geotécnica	2 y 4
4a. edición	
México	
Thomson Learning, 2001	
JUÁREZ B. EULALIO, Rico R., ALFONSO,	
Mecánica de suelos Tomo II	Todos
México	
Grupo Noriega 2003	
Tomo II	
WHITLOW, Roy	
Fundamentos de Mecánica de Suelos	2, 4 y 5
México	
Editorial CECSA, 2000	

Bibliografía complementaria

Temas para los que se recomienda:

BUDHU, Muni

Soil Mechanics and Foundations

2, 3, 4 y 5

3a. edición

New York

John Wiley and Sons, 2010

DAS, Braja M

Principios de Ingeniería de Cimentaciones

4. edición

México

Thomson Learning, 2002

HOLTZ D., Robert, et al.

An Introduction to Geotechnical Engineering

2 y 3

2a. edición

New York

Prentice Hall, 2011

LAMBE T., William, WHITMAN V., Robert

Mecánica de suelos

3 y 5

México

Grupo Noriega Editores, Limusa, 2002

(4/5)

gerencias didácticas Exposición oral X	Lasturas ablicatorias
	Lecturas obligatorias
Exposición audiovisual X	Trabajos de investigación
Ejercicios dentro de clase X	Prácticas de taller o laboratorio
Ejercicios fuera del aula X	Prácticas de campo
Seminarios	Búsqueda especializada en internet
Uso de software especializado X	Uso de redes sociales con fines académicos
Uso de plataformas educativas	
rma de evaluar	
Exámenes parciales X	Participación en clase
Exámenes finales X	Asistencia a prácticas
Trabajos y tareas fuera del aula X	

Perfil profesiográfico de quienes pueden impartir la asignatura

El profesor deberá ser Ingeniero Civil, u otras profesiones afines con maestría o doctorado en Mecánica de Suelos que posea práctica profesional en dicha área y que cuente con una formación desde el punto de vista docente.