# Solución numérica de ecuaciones diferenciales parciales

Cortés Rosas Jesús Javier, González Cárdenas Miguel Eduardo Pinilla Morán Víctor Damián, Salazar Moreno Alfonso Tovar Pérez Víctor Hugo \*

2019

#### Resumen

### Esta publicación pertenece al proyecto *Plataforma educativa para Análisis Numéri*co, realizado con al apoyo del Programa UNAM-DGAPA-PAPIME PE105717.

En este capítulo se mostrará el proceso numérico para resolver ecuaciones en derivadas parciales. Es un tema integrador de los esquemas de derivación surgidos de los polinomios interpolantes de Newton-Gregory aplicados a dos variables independientes y el método de las Diferencias finitas utilizado para resolver ecuaciones diferenciales con valores en la frontera<sup>1</sup>.

La mayoría de los fenómenos estudiados o de los problemas a solucionar, tanto en las ciencias físicas como en las ingenierías, se describen o involucran a ecuaciones diferenciales. Esto obedece a la necesidad que siempre se tiene de cuantificar la evolución temporal y espacial de los objetos físicos bajo observación.

Las derivadas parciales son utilizadas cuando en el modelo del fenómeno se requiere analizar el comportamiento de dos (o más) variables independientes, lo que hace que la abstracción sea más completa pero su solución más compleja. Los métodos analíticos suelen ser limitados (como separación de variables), a diferencia de los procesos numéricos que permiten una mayor versatilidad en el diseño del modelo.

En general, el proceso de solución numérico es el mismo que el utilizado para resolver ecuaciones diferenciales ordinarias con valores en la frontera: inicialmente se debe aplicar Diferencias finitas y con una ecuación de recurrencia construir un sistema de ecuaciones (no se recomienda el método del artillero). Dado lo anterior, será necesario contar con esquemas numéricos de derivación parcial para aplicarlos como diferencias finitas.

# 1. La ecuación en derivadas parciales

La solución de ecuaciones en derivadas parciales es uno de los clásicos dolores de cabeza a los que se enfrentan los profesionales de la ingeniería; los modelos matemáticos que hacen uso de ellos son muy comunes y están presentes en todas las ramas de la física: electromagnetismo, térmica, mecánica clásica y de fluidos, entre muchas otras.

<sup>&</sup>lt;sup>\*</sup>Profesores de la División de Ciencias Básicas de la Facultad de Ingeniería de la UNAM.

El Análisis numérico resuelve estas ecuaciones a través del método de las diferencias finitas. En realidad la dificultad en la solución de modelos en derivadas parciales radica en establecer claramente las condiciones iniciales y de frontera que definen al fenómeno; esto implica por necesidad incluir las características inherentes a los materiales de los objetos que participan en el fenómeno.

Es por lo anterior que la revisión de las técnicas numéricas de solución de ecuaciones en derivadas parciales pudiera dejar en el lector un sentimiento de insatisfacción por considerar que se recurre a artilugios matemáticos; en realidad, la plenitud del uso del Análisis numérico se obtiene en el laboratorio disponiendo de las condiciones de desarrollo del fenómeno y de las cualidades de los materiales.

Una *ecuación en derivadas parciales* es aquella que expresa una relación entre una función de varias variables y todas o algunas de sus derivadas parciales. Su representación general es:

$$f\left(x,y,...,\frac{\partial U}{\partial x},\frac{\partial U}{\partial y},...,\frac{\partial^2 U}{\partial x^2},...\right)=0$$

Donde U = f(x, y) es la variable dependiente.

### 1.1. Clasificación de ecuaciones en derivadas parciales

Las ecuaciones en derivadas parciales suelen clasificarse a partir de su *orden*. El orden de una ecuación diferencial parcial es el orden de la derivada mayor que aparece en ella. En este caso, se analizarán modelos matemáticos que corresponden a ecuaciones diferenciales parciales de segundo orden, de la forma:

$$A\frac{\partial^2 U}{\partial x^2} + B\frac{\partial^2 U}{\partial x \partial y} + C\frac{\partial^2 U}{\partial y^2} + F = 0$$
(1)

Donde los coeficientes A, B y C son en general, funciones de las variables x y y y F es función de  $x, y, U, \frac{\partial U}{\partial x}$  y  $\frac{\partial U}{\partial y}$ .

En función de los valores de los coeficientes  $A, B \ge C$  la ecuación diferencial parcial (1) tiene tres variantes:

- Si  $B^2 4AC < 0$  se le conoce como *EDP Elíptica*. En esta clasificación destacan las ecuaciones de Laplace y de Poisson.
- Si  $B^2 4AC = 0$  se le conoce como *EDP Parabólica*. En esta clasificación destaca la ecuación de transferencia de calor.
- Si  $B^2 4AC > 0$  se le conoce como *EDP Hiperbólica*. En esta clasificación destaca la ecuación de onda.

### 1.2. Esquemas numéricos para derivadas parciales

El método utilizado en la solución de ecuaciones en derivadas parciales es *diferencias finitas* que consiste en sustituir en la ecuación diferencial a resolver los esquemas de derivación numérica necesarias. Resulta entonces necesario disponer de esquemas numéricos para derivadas parciales.

La obtención de las mismas puede hacerse por varios caminos; se logra a través del polinomio de Taylor para la función f(x, y) o bien, a partir de las ecuaciones de derivación numéricas para la función y = f(x) respetando todas sus condiciones. Sea cual sea el camino elegido, deben hacerse un par de consideraciones:

- Se requiere de una función  $U(x_i, y_j)$ ; donde  $x \neq y$  son las variables independientes, i es el índice de la posición para  $x \neq j$  es el índice para la posición de y; estos índices hacen referencia al pivoteo de los esquemas de derivación y en consecuencia el uso de un paso constante para la variable  $x \neq 0$  otro también constante para y que no necesariamente deben ser iguales entre sí.
- La solución de la ecuación en derivadas parciales es una matriz, es decir, un arreglo de dos dimensiones.

La obtención de una la derivada parcial de una función U(x, y) se logra aplicando una derivada ordinaria a la función con respecto a una de las variables independientes, considerando a la otra constante. Bajo este principio, a partir de un esquema de derivación numérico ordinario se obtiene un esquema de derivación parcial.

A partir del esquema de la primera derivada de primer orden de interpolación:

$$y'_{x=x_0} = \frac{1}{h} \left[ \underline{-y_0}, y_1 \right] + O(h) \tag{2}$$

Si consideramos en lugar de la función f(x) a la función f(x, y) y si además observamos que la ecuación (2) utiliza un punto pivote y otro punto posterior, se puede plantear la siguiente ecuación en derivadas parciales:

$$\frac{\partial U(x,y)}{\partial x} = \frac{1}{\Delta x} \left[ -U(x_0, y_0) + U(x_1, y_0) \right] + O(h)$$
(3)

En la ecuación (3) se plantea derivar parcialmente con respecto a x, por lo que y deberá permanecer constante. En consecuencia, se utiliza como pivote al punto  $U(x_0, y_0)$  y al punto siguiente  $U(x_1, y_0)$ . El espaciamiento para la variable x es  $\Delta x$  y deberá ser constante. La ecuación resultante conserva su orden de error y se escribe en forma general y coloquialmente (omitiendo a las variables independiente pero mostrando los índices respectivos) como:

$$\frac{\partial U}{\partial x}\Big|_{i,j} = \frac{1}{\Delta x} \left[ -U_{i,j} + U_{i+1,j} \right] + O(h) \tag{4}$$

Aplicando los mismos criterios de define:

$$\frac{\partial U}{\partial y}\Big|_{i,j} = \frac{1}{\Delta y} \left[ -U_{i,j} + U_{i,j+1} \right] + O(h)$$
(5)

Si se sigue este criterio respectando las reglas de derivación pueden obtenerse otras fórmulas adicionales:

$$\frac{\partial U}{\partial x}\Big|_{i,j} = \frac{1}{2\Delta x} \left[ -U_{i-1,j} + U_{i+1,j} \right] + O(h^2) \tag{6}$$

$$\frac{\partial U}{\partial y}\Big|_{i,j} = \frac{1}{2\Delta y} \left[ -U_{i,j-1} + U_{i,j+1} \right] + O(h^2) \tag{7}$$

$$\frac{\partial^2 U}{\partial x^2}\Big|_{i,j} = \frac{1}{(\Delta x)^2} \left[ U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right] + O(h^2)$$
(8)

$$\frac{\partial^2 U}{\partial y^2}\Big|_{i,j} = \frac{1}{(\Delta y)^2} \left[ U_{i,j-1} - 2U_{i,j} + U_{i,j+1} \right] + O(h^2) \tag{9}$$

$$\frac{\partial^2 U}{\partial x \partial y}\Big|_{i,j} = \frac{1}{4\Delta x \Delta y} \left[ U_{i-1,j-1} - U_{i-1,j+1} - U_{i+1,j-1} + U_{i+1,j+1} \right] + O(h^2)$$
(10)

### 2. La ecuación en derivadas parciales elípticas

Este caso corresponde a la ecuación de *Laplace*, que es un caso particular de la ecuación de *Poisson* cuando f(x, y) = 0 que tiene la siguiente forma:

$$\frac{\partial^2}{\partial x^2}U(x,y) + \frac{\partial^2}{\partial y^2}U(x,y) = f(x,y) = 0$$
(11)

Para  $(x, y) \in \mathbb{R}$ . De acuerdo al método de diferencias finitas debe disponerse de los valores de los pasos para la variable  $x \neq y$ . Si los intervalos de solución para  $x \neq y$  respectivamente son  $[a, b] \neq [c, d]$ , sean  $n \neq m$  el número de espacios, el tamaño de los pasos será  $\Delta x = \frac{b-a}{n} \neq \Delta x = \frac{d-c}{m}$ . En consecuencia, los valores de las variables independientes serán:  $x_i = a + i\Delta x \neq y_j = c + j\Delta y$ .

Los esquemas de derivación parcial numéricos propuestos y que serán sustituidos en la ecuación (11) son:

$$\frac{\partial^2 U}{\partial x^2}\Big|_{i,j} = \frac{1}{(\Delta x)^2} \left[ U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right] + O(h^2)$$
(12)

$$\frac{\partial^2 U}{\partial y^2}\Big|_{i,j} = \frac{1}{(\Delta y)^2} \left[ U_{i,j-1} - 2U_{i,j} + U_{i,j+1} \right] + O(h^2)$$
(13)

Sustituyendo (12) y (13) en (11):

$$\frac{1}{(\Delta x)^2} \left[ U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right] + \frac{1}{(\Delta y)^2} \left[ U_{i,j-1} - 2U_{i,j} + U_{i,j+1} \right] = 0$$
(14)

La expresión (14) es la ecuación de recurrencia del fenómeno.

El problema de la transmisión de calor en una placa es un típico ejemplo de la ecuación de Laplace. Para pivotear la ecuación de recurrencia es necesario crear una maya de referencia; las rectas  $x = x_i$  y  $y = y_j$  que se trazan dentro de la placa se denomina *líneas de red* y sus intersecciones se llaman *puntos de red*. Cada punto de red que forma la malla tendrá la forma  $(x_i, y_j)$  para i = 1, 2, 3, ..., n-1 y j = 1, 2, 3, ..., m-1 como se observa en la figura 1.

Esta ecuación tiene como punto pivote a  $U_{i,j}$  y alrededor el resto de puntos, de acuerdo a la figura 2.



Si usamos la información de las condiciones de frontera donde sea apropiado en el sistema que se producirá al pivotear la ecuación (14) en todos los puntos  $(x_i, y_j)$  que están adyacentes a un punto de red en la frontera se tendrá un sistema de (n-1)(m-1) ecuaciones lineales con (n-1)(m-1)incógnitas, siendo éstas las aproximaciones de U(n-1)(m-1) para los puntos interiores de la red.

### Ejemplo de aplicación

Se tiene una delgada placa de acero rectángular de  $10 \, cm \, x \, 20 \, cm$ . Uno de los bordes de  $10 \, cm$  se mantiene a  $100^{\circ}c$  y los otros tres bordes a  $0^{\circ}c$ , estas temperaturas son producto de una fuente de calor colocada debajo de ella. Se desea conocer la distribución de la temperatura al interior de la placa de acuerdo a la figura 3.



Figura 3: Dimensiones de la placa y condiciones iniciales de frontera

Se propone un análisis inicial en donde n = 4 y m = 2 por lo que los espaciamientos son:

$$\Delta x = \frac{20-0}{4} = 5$$
$$\Delta y = \frac{10-0}{4} = 5$$

Una vez teniendo las lineas y puntos de red, las condiciones de frontera son las siguientes, de acuerdo con la figura 4:

$$U(x_{1}, y_{j}) = 0^{\circ}c$$

$$U(x_{5}, y_{j}) = 100^{\circ}c$$

$$U(x_{i}, y_{1}) = 0^{\circ}c$$

$$U(x_{1}, y_{3}) = 100^{\circ}c$$
(15)



Figura 4: Pivoteo paran=4ym=2

Por claridad se renombrará a los puntos i, j como  $P_i$  y a su temperatura  $U_{i,j}$  como  $W(P_1)$ , tomados de izquierda a derecha y de arriba hacia abajo.

Sustituyendo los espaciamientos  $\Delta_x$  y  $\Delta_y$  en la ecuación de recurrencia (14):

$$\frac{1}{25} \left[ U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right] + \frac{1}{25} \left[ U_{i,j-1} - 2U_{i,j} + U_{i,j+1} \right] = 0$$

$$\frac{1}{25} \left[ U_{i-1,j} + U_{i+1,j} + U_{i,j-1} + U_{i,j+1} - 4U_{i,j} \right] = 0$$
(16)

Pivoteando en los puntos  $P_1$ ,  $P_2$  y  $P_3$ , las temperaturas  $W_i = U(P_i)$  respectivamente son:

$$\frac{1}{25} \left[ -4W_1 + W_2 \right] = 0$$
$$\frac{1}{25} \left[ W_1 - 4W_2 + W_3 \right] = 0$$
$$\frac{1}{25} \left[ W_2 - 4W_3 + 100 \right] = 0$$

Resolviendo el sistema se obtiene:  $W_1 = 1,786, W_2 = 7,142$  y  $W_3 = 26,786$ .

Es posible obtener resultados más aproximados. En un segundo análisis, se propone elevar el número de líneas y puntos de red con n = 8 y m = 4 que arroja una  $\Delta_x = \Delta_y = 2,5$  La malla resultante se la mostrada en la figura 5.



Figura 5: Malla para n = 8 y m = 4

El sistema de ecuaciones producto del pivoteo es:

 $-4W_1 + W_2 + W_8 = 0$  $W_1 - 4W_2 + W_3 + W_9 = 0$  $W_2 - 4W_3 + W_4 + W_{10} = 0$  $W_3 - 4W_4 + W_5 + W_{11} = 0$  $W_4 - 4W_5 + W_6 + W_{12} = 0$  $W_5 - 4W_6 + W_7 + W_{13} = 0$  $W_6 - 4W_7 + W_{14} = -100$ 

 $W_{1} - 4W_{8} + W_{9} + W_{15} = 0$  $W_{2} + W_{8} - 4W_{9} + W_{10} + W_{16} = 0$  $W_{3} + W_{9} - 4W_{10} + W_{11} + W_{17} = 0$  $W_{4} + W_{10} - 4W_{11} + W_{12} + W_{18} = 0$  $W_{5} + W_{11} - 4W_{12} + W_{13} + W_{19} = 0$  $W_{6} + W_{12} - 4W_{13} + W_{14} + W_{20} = 0$  $W_{7} + W_{13} - 4W_{14} + W_{21} = -100$ 

$$W_8 - 4W_{15} + W_{16} = 0$$
$$W_9 + W_{15} - 4W_{16} + W_{17} = 0$$
$$W_{10} + W_{16} - 4W_{17} + W_{18} = 0$$
$$W_{11} + W_{17} - 4W_{18} + W_{19} =$$
$$W_{12} + W_{18} - 4W_{19} + W_{20} = 0$$
$$W_{13} + W_{19} - 4W_{20} + W_{21} = 0$$
$$W_{14} + W_{20} - 4W_{21} = -100$$

Cuya solución es:

| $W_1 = 0,3530$  | $W_8 = 0,4988$       | $W_{15} = 0,3530$  |
|-----------------|----------------------|--------------------|
| $W_2 = 0,9132$  | $W_9 = 1,2894$       | $W_{16} = 0,9132$  |
| $W_3 = 2,0103$  | $W_{10} = 2,8323$    | $W_{17} = 2,0103$  |
| $W_4 = 4,2957$  | $W_{11} = 6,0193$    | $W_{18} = 4,2957$  |
| $W_5 = 9,1531$  | $W_{12} = 12,\!6537$ | $W_{19} = 9,1531$  |
| $W_6 = 19,6631$ | $W_{13} = 26,2983$   | $W_{20} = 19,6631$ |
| $W_7 = 43,2101$ | $W_{14} = 53.1774$   | $W_{21} = 43,2101$ |

### 3. La ecuación en derivadas parciales parabólicas

Las ecuaciones en derivadas parciales parabólicas se presentan en problemas de propagación del calor en una dimensión en función del tiempo. En este tipo de problemas la solución avanza en intervalos indefinidamente satisfaciendo las condiciones de frontera conocidas, conforme el fenómeno progresa. Este tipo de dominio de solución, de extremo abierto, se muestra en la figura 6.



Figura 6: Propagación del calor en una dirección

En estos modelos la variable dependiente es U (calor) y sus las variables independientes son  $x_i$  y  $t_j$ . La solución debe satisfacer la ecuación diferencial parcial en todo el dominio abierto, así como

las condiciones iniciales y de frontera; el problema unidimensional del flujo transitorio de calor que se define mediante la ecuación diferencial parcial (17).

$$\frac{\partial}{\partial t}U(x_i, t_j) = \frac{k}{C \cdot P} \frac{\partial^2}{\partial x^2} U(x_i, t_j)$$
(17)

Donde C es la capacidad calorífica del material, P es la densidad del material y k es la conductividad térmica.

Como se mencionó, la temperatura  $U(x_i, t_j)$  se propaga en un plano espacio-tiempo como el mostrado en la figura 7. Si se considera una red espacio-tiempo como la mostrada, la solución de la ecuación (17) consiste en determinar la temperatura  $U(x_i, t_j)$  en cada punto de la red utilizada.



Figura 7: Solución espacio-temporal

Para utilizar la red propuesta, en la ecuación (17) deberán sustituirse los esquemas numéricos de derivación parcial de acuerdo a lo establecido por el método de las diferencias finitas. Se propone el uso de las siguientes ecuaciones:

$$\left. \frac{\partial U}{\partial t} \right|_{i,j} = \left. \frac{1}{\Delta_t} \left[ -U_{i,j} + U_{i,j+1} \right] + O(h) \right. \tag{18}$$

$$\frac{\partial^2 U}{\partial x^2}\Big|_{i,j} = \frac{1}{(\Delta_x)^2} \left[ U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right] + O(h^2)$$
(19)

Sustituyendo:

$$\frac{1}{\Delta_t} \left[ -U_{i,j} + U_{i,j+1} \right] = \frac{k}{C \cdot P} \frac{1}{(\Delta_x)^2} \left[ U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right]$$
(20)

Despejando el término incógnita  $U_{i,j+1}$  (posición *i* en el momento futuro j+1), resulta:

$$U_{i,j+1} = U_{i,j} + \frac{\Delta_t}{(\Delta_x)^2} \frac{k}{C \cdot P} \left[ U_{i-1,j} - 2U_{i,j} + U_{i+1,j} \right]$$
(21)

Con la ecuación (21) puede obtenerse la temperatura U en la coordenada  $x_i$  en el instante  $t_{j+1}$  en función de las temperaturas en los puntos adyacentes de la red. Las temperaturas iniciales conocidas y las temperaturas de la frontera suministran valores necesarios para iniciar los cálculos que proceden entonces renglón por renglón satisfaciendo los puntos extremos de cada renglón, las condiciones de frontera dadas, hasta que satisfaga en forma aproximada algún estado final de temperatura (en función del tiempo), conforme la solución se aproxima a un estado estacionario. Esta progresión de renglón por renglón en función del tiempo, que continúa indefinidamente, ilustra la naturaleza de extremo abierto del dominio de solución de una ecuación en derivadas parciales de tipo parabólico.

Por otra parte, la solución de la ecuación (21) será estable si:

$$\frac{k}{C \cdot P} \frac{\Delta_t}{(\Delta_x^2)} \le 0.5 \tag{22}$$

O bien, la solución será estable y no oscilatoria si:

$$\frac{k}{C \cdot P} \frac{\Delta_t}{(\Delta_x^2)} \le 0.25 \tag{23}$$

La referencia hacia la estabilidad del modelo matemático radica en que si los coeficientes antes citados no tienen los valores necesarios para cumplir con las condiciones (22) y (23) los términos de la ecuación (21) tendrán valores tales que no se logrará que la ecuación completa tienda a un determinado valor.

### Ejemplo de aplicación

Determinar la distribución estacionaria de temperatura a lo largo de una barra delgada de aluminio de longitud l = 1ft; esta se muestra en la figura 8. Se supone que está perfectamente aislada en todas sus fronteras, excepto en el extremo derecho en que está en contacto con una fuente de calor que se mantiene a  $100^{\circ}F$  constantes; en principio, al inicio del experimento, también se encuentra aislada en su extremo izquierdo.



Figura 8: Barra de aluminio

Las propiedades del material son:

$$k = 0,0370 \frac{Btu}{s \cdot ft \cdot {}^{\circ}F}$$
$$C = 0,212 \frac{Btu}{Lb \cdot {}^{\circ}F}$$

$$P = 168 \frac{Lb}{ft^3}$$

La barra se divide en doce intervalos iguales mediante las trece estaciones mostradas, de acuerdo a la figura 8. Las condiciones de frontera son:

$$U_{x_i,t_0} = 100^{\circ}F \tag{24}$$

Significa que en t = 0 toda la barra se encuentra en equilibrio térmico a  $100^{\circ}F$ . Un instante ( $\Delta t$ ) después, se retira el aislante del extremo izquierdo de la barra y súbitamente la temperatura cambia a  $20^{\circ}F$ , es decir:

$$U_{x_0,t_j} = 20^{\circ}F \quad para \quad j > 0 \tag{25}$$

Implica que para un intervalo después de iniciar el experimento (j > 0) en la posición i = 1 habrá una temperatura constante de 20°*F*. A partir de ese instante, la distribución de temperatura en la barra pasa a un estado transitorio. Este estado existe hasta el instante en que la temperatura en todos los puntos de la barra se aproxime al estado final de equilibrio a 20°*F*.

En este sentido, los valores dados de k, C y P establecen una difusividad térmica  $\frac{k}{C \cdot P}$  de 0,00104 $\frac{ft^2}{s}$ .

Con el número de estaciones mostrado en la figura 8, el valor de  $\Delta_x$  es  $\frac{1}{12}ft$ . Con todos estos datos y haciendo referencia al criterio de estabilidad ya mencionado en la ecuación (23) para una solución estable y no oscilatoria, se observa que el uso de un valor conveniente es  $\Delta t = 1,0 s$  para satisfacer el requisito para dicha solución.

En el esquema de solución propuesto en la figura 6, el renglón correspondiente a  $t_0$  corresponde a  $100^{\circ}F$  en todas las posiciones *i*, ya que es la temperatura de equilibrio inicial.

Asimismo, desde el instante  $t_1$  y hasta concluir el experimento, la temperatura en la estación  $x_1$  será de 20°F (cuando se retira el aislante del extremo izquierdo de la barra).

Por último, ya que el extremo derecho de la barra permanece constantemente en contacto con la fuente de calor, el punto  $x_{13}$  siempre será de  $100^{\circ}F$ .

La figura 9 muestra los resultados para los primeros 30 instantes; las líneas punteadas delimitan las condiciones de frontera.

Se observa que después de eliminar el aislante izquierdo de la barra, la tempera en cada estación cambia progresivamente según se avanza a lo largo de la barra. Eventualmente, después del suficiente trascurrir del tiempo, la barra quedará en equilibrio.

**Condiciones de estabilidad.** Para ejemplificar los efectos de los valores de las constantes en la solución numérica, se modificará el valor de  $\Delta_t$  para que la solución sea inestable. Con el mismo procedimiento planteado, con  $\Delta_t = 5,0$  se obtiene:

$$\frac{k}{C \cdot P} \frac{\Delta_t}{(\Delta_x)^2} = 0.7479$$

La solución obtenida se muestra en la figura 10; se puede observar, los valores de las temperaturas

|      |    | Posición Xi          |           |           |           |           |           |           |           |           |           |           |           |           |  |
|------|----|----------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|--|
|      |    | 1 2 3 4 5 6 7 8 9 10 |           |           |           |           |           |           |           |           | 11        | 12        | 13        |           |  |
|      | 0  | 100.00000            | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 1  | 0.00000              | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 2  | 0.00000              | 85.04043  | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 3  | 0.00000              | 74.55664  | 97.76211  | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 4  | 0.00000              | 66.87472  | 94.62545  | 99.66522  | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 5  | 0.00000              | 61.02194  | 91.22799  | 98.96138  | 99.94992  | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 6  | 0.00000              | 56.41202  | 87.86618  | 97.95238  | 99.80953  | 99.99251  | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 7  | 0.00000              | 52.67843  | 84.66962  | 96.72135  | 99.55908  | 99.96626  | 99.99888  | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 8  | 0.00000              | 49.58371  | 81.68676  | 95.34297  | 99.19548  | 99.91022  | 99.99417  | 99.99983  | 100.00000 | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 9  | 0.00000              | 46.96868  | 78.92720  | 93.87638  | 98.72608  | 99.81586  | 99.98246  | 99.99901  | 99.99997  | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 10 | 0.00000              | 44.72322  | 76.38267  | 92.36554  | 98.16361  | 99.67776  | 99.96001  | 99.99668  | 99.99983  | 100.00000 | 100.00000 | 100.00000 | 100.00000 |  |
|      | 11 | 0.00000              | 42.76894  | 74.03752  | 90.84194  | 97.52276  | 99.49347  | 99.92327  | 99.99166  | 99.99939  | 99.99997  | 100.00000 | 100.00000 | 100.00000 |  |
|      | 12 | 0.00000              | 41.04854  | 71.87375  | 89.32749  | 96.81815  | 99.26296  | 99.86921  | 99.98259  | 99.99832  | 99.99989  | 100.00000 | 100.00000 | 100.00000 |  |
| -    | 13 | 0.00000              | 39.51917  | 69.87343  | 87.83706  | 96.06331  | 98.98792  | 99.79548  | 99.96798  | 99.99620  | 99.99967  | 99.99998  | 100.00000 | 100.00000 |  |
| nsta | 14 | 0.00000              | 38.14814  | 68.01985  | 86.38039  | 95.27021  | 98.67122  | 99.70047  | 99.94640  | 99.99250  | 99.99920  | 99.99994  | 100.00000 | 100.00000 |  |
| Inte | 15 | 0.00000              | 36.91002  | 66.29783  | 84.96361  | 94.44910  | 98.31641  | 99.58329  | 99.91650  | 99.98660  | 99.99831  | 99.99984  | 99.99999  | 100.00000 |  |
| đ.   | 16 | 0.00000              | 35.78473  | 64.69386  | 83.59028  | 93.60865  | 97.92740  | 99.44362  | 99.87714  | 99.97787  | 99.99678  | 99.99963  | 99.99997  | 100.00000 |  |
|      | 17 | 0.00000              | 34.75617  | 63.19600  | 82.26216  | 92.75601  | 97.50815  | 99.28165  | 99.82736  | 99.96563  | 99.99438  | 99.99925  | 99.99992  | 100.00000 |  |
|      | 18 | 0.00000              | 33.81127  | 61.79374  | 80.97978  | 91.89707  | 97.06256  | 99.09798  | 99.76641  | 99.94925  | 99.99081  | 99.99862  | 99.99983  | 100.00000 |  |
|      | 19 | 0.00000              | 32.93931  | 60.47783  | 79.74281  | 91.03663  | 96.59432  | 98.89348  | 99.69377  | 99.92811  | 99.98576  | 99.99764  | 99.99968  | 100.00000 |  |
|      | 20 | 0.00000              | 32.13137  | 59.24015  | 78.55036  | 90.17853  | 96.10686  | 98.66926  | 99.60910  | 99.90168  | 99.97891  | 99.99616  | 99.99942  | 100.00000 |  |
|      | 21 | 0.00000              | 31.38001  | 58.07351  | 77.40116  | 89.32586  | 95.60333  | 98.42653  | 99.51227  | 99.86946  | 99.96994  | 99.99407  | 99.99902  | 100.00000 |  |
|      | 22 | 0.00000              | 30.67893  | 56.97161  | 76.29371  | 88.48106  | 95.08658  | 98.16661  | 99.40329  | 99.83106  | 99.95852  | 99.99120  | 99.99843  | 100.00000 |  |
|      | 23 | 0.00000              | 30.02277  | 55.92884  | 75.22638  | 87.64604  | 94.55918  | 97.89085  | 99.28228  | 99.78613  | 99.94434  | 99.98739  | 99.99758  | 100.00000 |  |
|      | 24 | 0.00000              | 29.40693  | 54.94024  | 74.19748  | 86.82229  | 94.02341  | 97.60060  | 99.14950  | 99.73443  | 99.92711  | 99.98248  | 99.99642  | 100.00000 |  |
|      | 25 | 0.00000              | 28.82745  | 54.00136  | 73.20530  | 86.01093  | 93.48129  | 97.29718  | 99.00530  | 99.67575  | 99.90657  | 99.97628  | 99.99487  | 100.00000 |  |
|      | 26 | 0.00000              | 28.28090  | 53.10828  | 72.24814  | 85.21279  | 92.93459  | 96.98186  | 98.85007  | 99.60998  | 99.88247  | 99.96863  | 99.99286  | 100.00000 |  |
|      | 27 | 0.00000              | 27.76427  | 52.25745  | 71.32436  | 84.42849  | 92.38490  | 96.65589  | 98.68427  | 99.53707  | 99.85460  | 99.95937  | 99.99030  | 100.00000 |  |
|      | 28 | 0.00000              | 27.27493  | 51.44570  | 70.43235  | 83.65841  | 91.83358  | 96.32040  | 98.50841  | 99.45699  | 99.82277  | 99.94832  | 99.98712  | 100.00000 |  |
|      | 29 | 0.00000              | 26.81056  | 50.67018  | 69.57059  | 82.90282  | 91.28182  | 95.97651  | 98.32300  | 99.36981  | 99.78683  | 99.93534  | 99.98325  | 100.00000 |  |
|      | 30 | 0.00000              | 26.36911  | 49.92830  | 68.73761  | 82.16184  | 90.73066  | 95.62523  | 98.12857  | 99.27559  | 99.74666  | 99.92029  | 99.97859  | 100.00000 |  |

Figura 9: Solución de la propagación de calor en la barra de aluminio

cambian sin patrón alguno, incluso descienden por debajo de los  $20^{\circ}F$  o se elevan por arriba de los  $100^{\circ}F$ ; estos son los efectos de una *solución inestable*.

|         | L  | Posición Xi |               |               |               |               |               |               |               |              |              |              |              |           |
|---------|----|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|-----------|
|         |    | 1           | 2             | 3             | 4             | 5             | 6             | 7             | 8             | 9            | 10           | 11           | 12           | 13        |
|         | 0  | 100.00000   | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
|         | 1  | 0.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
|         | 2  | 0.00000     | 25.20216      | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
|         | 3  | 0.00000     | 62.29866      | 44.05283      | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
|         | 4  | 0.00000     | 2.05311       | 99.54760      | 58.15272      | 100.00000     | 100.00000     | 100.00000     | 100.00000     | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
|         | 5  | 0.00000     | 73.44120      | -4.33865      | 120.41606     | 68.69914      | 100.00000     | 100.00000     | 100.00000     | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
|         | 6  | 0.00000     | -39.66888     | 147.15283     | -11.58091     | 130.79465     | 76.58763      | 100.00000     | 100.00000     | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
|         | 7  | 0.00000     | 129.74120     | -111.31520    | 213.64236     | -16.24488     | 134.64526     | 82.48805      | 100.00000     | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
| _       | 8  | 0.00000     | -147.60741    | 312.05104     | -201.36959    | 268.56839     | -17.22978     | 134.59908     | 86.90144      | 100.00000    | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
| nst     | 9  | 0.00000     | 306.61436     | -415.79113    | 534.16144     | -296.70595    | 310.10580     | -14.64244     | 132.37569     | 90.20256     | 100.00000    | 100.00000    | 100.00000    | 100.00000 |
| ante tj | 10 | 0.00000     | -463.07029    | 835.09663     | -797.85349    | 778.64705     | -386.68099    | 338.22863     | -9.13529      | 129.07542    | 92.67173     | 100.00000    | 100.00000    | 100.00000 |
|         | 11 | 0.00000     | 854.29717     | -1357.31572   | 1602.74640    | -1272.18160   | 1027.17602    | -463.80885    | 354.06406     | -1.53239     | 125.38230    | 94.51861     | 100.00000    | 100.00000 |
|         | 12 | 0.00000     | -1438.93744   | 2510.98566    | -2761.70039   | 2598.07247    | -1807.91843   | 1263.16698    | -523.66572    | 359.37554    | 7.36747      | 121.70394    | 95.90004     | 100.00000 |
|         | 13 | 0.00000     | 2591.81405    | -4387.32711   | 5191.14960    | -4706.50824   | 3784.77342    | -2370.45102   | 1473.34243    | -564.41472   | 356.18313    | 16.88196     | 118.26749    | 100.00000 |
|         | 14 | 0.00000     | -4567.05406   | 7997.41402    | -9376.57907   | 9048.02198    | -7170.49731   | 5108.59875    | -2925.93060   | 1648.37103   | -586.19417   | 346.50610    | 28.76962     | 100.00000 |
|         | 15 | 0.00000     | 8246.95509    | -14395.90937  | 17399.99741   | -16864.28502  | 14145.10447   | -10085.55503  | 6505.20309    | -3444.51454  | 1782.85211   | -588.79363   | 319.70845    | 100.00000 |
|         | 16 | 0.00000     | -14857.96384  | 26323.11763   | -32011.59964  | 31959.01406   | -27173.26101  | 20447.98511   | -13346.50047  | 7907.61723   | -3901.04530  | 1864.68621   | -524.16870   | 100.00000 |
|         | 17 | 0.00000     | 27058.03367   | -48112.55393  | 59470.15061   | -60119.29223  | 52676.07087   | -40449.22661  | 27828.66775   | -16822.62943 | 9244.22248   | -4234.76859  | 1729.50799   | 100.00000 |
|         | 18 | 0.00000     | -49406.77065  | 88582.96782   | -110449.71704 | 113699.53162  | -101348.14290 | 80276.88049   | -56639.93239  | 36073.02117  | -20335.21533 | 10308.37634  | -3950.47912  | 100.00000 |
|         | 19 | 0.00000     | 90761.77728   | -163502.53750 | 206081.24402  | -214810.29637 | 195354.48155  | -157985.54422 | 115118.18132  | -75466.41344 | 44777.67501  | -23277.68586 | 9744.50834   | 100.00000 |
|         | 20 | 0.00000     | -167310.29966 | 303122.38628  | -385177.25148 | 406801.90937  | -375730.64789 | 310580.87354  | -231710.68359 | 157026.73910 | -96066.25272 | 52326.14576  | -22169.26512 | 100.00000 |

Figura 10: Solución inestable

### 4. La ecuación en derivadas parciales hiperbólicas

El ejemplo típico de este tipo de ecuación en derivadas parciales es la ecuación de onda unidimensional que responde a la forma:

$$\frac{\partial^2}{\partial t^2} Y(t_i, x_j) = \frac{Fg}{W} \frac{\partial^2}{\partial x^2} Y(t_i, x_j)$$
(26)

La solución de (26) existe en un plano general espacio-tiempo, como el que se observa en la figura 11. El valor de la variable dependiente Y se determina entonces en todos los puntos de la red sobre el intervalo deseado.



Figura 11: Solución espacio-tiempo

El procedimiento numérico comienza utilizando los valores conocidos de la condición inicial y se procede a partir de ahí en una progresión renglón por renglón conforme avanza el tiempo, satisfaciendo siempre las condiciones de frontera especificadas conforme la solución progresa.

En la ecuación (26) deberán sustituirse dos ecuaciones de derivación parcial numéricas de acuerdo a lo establecido en el método de las diferencias finitas, en particular:

$$\frac{\partial^2 Y}{\partial t^2}\Big|_{i,j} = \frac{1}{(\Delta t)^2} \left[ Y_{i-1,j} - 2Y_{i,j} + Y_{i+1,j} \right] + O(h^2)$$
(27)

$$\frac{\partial^2 Y}{\partial x^2}\Big|_{i,j} = \frac{1}{(\Delta x)^2} \left[ Y_{i,j-1} - 2Y_{i,j} + Y_{i,j+1} \right] + O(h^2)$$
(28)

De la sustitución resulta:

$$\frac{1}{(\Delta t)^2} \left[ Y_{i-1,j} - 2Y_{i,j} + Y_{i+1,j} \right] = \frac{Fg}{W} \frac{1}{(\Delta x)^2} \left[ Y_{i,j-1} - 2Y_{i,j} + Y_{i,j+1} \right]$$
(29)

Despejando a la incógnita (ubicación del punto en el instante futuro i + 1 en la posición j):

$$Y_{i+1,j} = 2Y_{i,j} - Y_{i-1,j} + C \left[ Y_{i,j-1} - 2Y_{i,j} + Y_{i,j+1} \right]$$
(30)

Donde:  $C = \frac{Fg}{W} \frac{(\Delta t)^2}{(\Delta x)^2}.$ 

El coeficiente  $\frac{Fg}{W}$  es un dato de diseño del material de la cuerda que se hará oscilar.

El valor de C es importante ya que de él depende la estabilidad de la solución; será inestable cuando C > 1 y será estable cuando  $C \leq 1$ .

### Ejemplo de aplicación

**Condiciones iniciales y de frontera**. Una cuerda con una longitud de 1,5ft y un coeficiente  $\frac{fg}{W} = 9651 \frac{lb^2}{s^2}$  es estirada entre los apoyos A y B. La cuerda es desplazada de su posición de equilibrio jalando en el punto correspondiente a los dos tercios de su longitud, adquiriendo la configuración de la figura 12. Se desean determinar las configuraciones intermedias de la cuerda durante los primeros 0,2s a partir del instante en que la cuerda se deja en libertad a partir de la configuración mostrada. Para determinar las configuraciones debemos calcular los desplazamientos Y en diferentes puntos a lo largo de la cuerda correspondientes en los distintos períodos de tiempo.



Figura 12: Cuerda tensionada, condiciones iniciales  $t_0 = 0$ 

Analíticamente, estas condiciones iniciales son:

$$Y(0,x) = \begin{cases} 0.05x & 0 \le x \le 1.0\\ -0.1x + 0.15 & 1.0 < x \le 1.5 \end{cases}$$
(31)

El anclaje de la cuerda implica que:

$$Y(t_i, x_1) = 0$$
  
 $Y(t_i, x_1) = 0$ 
(32)

En cualquier instante, los puntos  $x_0$  y  $x_{16}$  están fijos (condiciones de frontera). Asimismo, dado que la cuerda parte del reposo:

$$\frac{\partial Y}{\partial t} = 0 \tag{33}$$

El valor de la constante C es determinante para obtener una solución estable. Por condiciones de diseño  $\Delta_x = \frac{1,5lb}{10} = 0,1$ , por lo que para cumplir con la condición de estabilidad deberá escogerse un valor para el intervalo de  $\Delta_t = 0,001s$ . La observación solicitada se logrará después de 200 intervalos. Por lo anterior:

$$C = \frac{Fg}{W} \frac{(\Delta t)^2}{(\Delta x)^2} = 0,9651$$
(34)

**Primera iteración**. Sustituyendo la constante C en la ecuación de recurrencia (30) para pivotear en  $t_0$  (i = 0) resulta:

$$Y_{1,j} = 2Y_{0,j} - Y_{-1,j} + C \left[ Y_{0,j-1} - 2Y_{0,j} + Y_{0,j+1} \right]$$
(35)

Antes de pivotear para  $j = 2, 3, \dots 15$  se observa que el término  $Y_{-1,j}$  no existe; no hay ninguna condición antes de i = 0. La solución para este término parte de la condición inicial (33), que utilizando los esquemas numéricos de derivación parcial se expresa como:

$$\frac{\partial}{\partial t}Y(t_i, x_j)\Big|_{i,j} = \frac{1}{2\Delta_t}\left[-Y_{i-1,j} + Y_{i+1,j}\right] = 0$$
(36)

Para i = 0 y espejando:

$$Y_{-1,j} = Y_{1,j} \tag{37}$$

Sustituyendo (37) en (35) resulta:

$$Y_{1,j} = Y_{0,j} + \frac{C}{2} \left[ Y_{0,j+1} - 2Y_{0,j} + Y_{0,j-1} \right]$$
(38)

La ecuación (38) se utiliza exclusivamente para cuando i = 0. Para valores de  $i = 1, 2, 3, \cdots$  podrá utilizarse (30) ya que no se producirá ninguna irregularidad.

Articulación de la solución. Los pasos a seguir son:

- 1. Partiendo del esquema mostrado en la figura 11, las condiciones iniciales (33) corresponden a las columnas j = 1 y j = 16 y son 0 para toda *i*, es decir, para todo el proceso.
- 2. Las condiciones iniciales (31) completan el renglón correspondiente a i = 0, debiendo calcular cada valor de  $j = 2, 3, \dots, 15$  con el respectivo calor de x con  $\Delta_x = 0, 1 ft$ .
- 3. El renglón que corresponde a Y(1, j) se obtiene pivoteando la ecuación (38) para  $j = 2, 3, \dots, 15$ ; esta expresión sólo debe aplicarse en estas condiciones.
- 4. Finalmente, para cada i > 0 se pivotea la ecuación (35) en los respectivos puntos de j.

La figura 13 muestra los resultados para los primeros 20 intervalos; las líneas punteadas delimitan las condiciones de frontera e iniciales.

Por claridad, la figura 14 muestra sólo los resultados para los primeros 10 intervalos; se observa claramente el desplazamiento de cada punto en j.

|     | 55 | Posición (Xj) |          |          |          |          |          |          |          |          |          |          |          |          |          |          |         |
|-----|----|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
|     |    | 1             | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16      |
|     | 0  | 0.00000       | 0.00500  | 0.01000  | 0.01500  | 0.02000  | 0.02500  | 0.03000  | 0.03500  | 0.04000  | 0.04500  | 0.05000  | 0.04000  | 0.03000  | 0.02000  | 0.01000  | 0.00000 |
|     | 1  | 0.00000       | 0.00500  | 0.01000  | 0.01500  | 0.02000  | 0.02500  | 0.03000  | 0.03500  | 0.04000  | 0.04500  | 0.04276  | 0.04000  | 0.03000  | 0.02000  | 0.01000  | 0.00000 |
|     | 2  | 0.00000       | 0.00500  | 0.01000  | 0.01500  | 0.02000  | 0.02500  | 0.03000  | 0.03500  | 0.04000  | 0.03801  | 0.03502  | 0.03301  | 0.03000  | 0.02000  | 0.01000  | 0.00000 |
|     | 3  | 0.00000       | 0.00500  | 0.01000  | 0.01500  | 0.02000  | 0.02500  | 0.03000  | 0.03500  | 0.03326  | 0.03005  | 0.02823  | 0.02505  | 0.02326  | 0.02000  | 0.01000  | 0.00000 |
|     | 4  | 0.00000       | 0.00500  | 0.01000  | 0.01500  | 0.02000  | 0.02500  | 0.03000  | 0.02849  | 0.02510  | 0.02343  | 0.02014  | 0.01843  | 0.01510  | 0.01349  | 0.01000  | 0.00000 |
|     | 5  | 0.00000       | 0.00500  | 0.01000  | 0.01500  | 0.02000  | 0.02500  | 0.02372  | 0.02017  | 0.01860  | 0.01524  | 0.01357  | 0.01024  | 0.00860  | 0.00517  | 0.00372  | 0.00000 |
|     | 6  | 0.00000       | 0.00500  | 0.01000  | 0.01500  | 0.02000  | 0.01894  | 0.01525  | 0.01376  | 0.01037  | 0.00868  | 0.00541  | 0.00368  | 0.00037  | -0.00124 | -0.00475 | 0.00000 |
|     | 7  | 0.00000       | 0.00500  | 0.01000  | 0.01500  | 0.01415  | 0.01034  | 0.00890  | 0.00552  | 0.00378  | 0.00059  | -0.00125 | -0.00441 | -0.00622 | -0.00948 | -0.00525 | 0.00000 |
| =   | 8  | 0.00000       | 0.00500  | 0.01000  | 0.00936  | 0.00544  | 0.00403  | 0.00068  | -0.00113 | -0.00421 | -0.00620 | -0.00918 | -0.01120 | -0.01421 | -0.01049 | -0.00477 | 0.00000 |
| sta | 9  | 0.00000       | 0.00500  | 0.00455  | 0.00056  | -0.00085 | -0.00415 | -0.00606 | -0.00901 | -0.01115 | -0.01395 | -0.01618 | -0.01895 | -0.01571 | -0.00957 | -0.00521 | 0.00000 |
| nte | 10 | 0.00000       | -0.00026 | -0.00432 | -0.00574 | -0.00897 | -0.01099 | -0.01380 | -0.01611 | -0.01872 | -0.02116 | -0.02370 | -0.02090 | -0.01440 | -0.01036 | -0.00483 | 0.00000 |
| Ξ   | 11 | 0.00000       | -0.00918 | -0.01065 | -0.01379 | -0.01592 | -0.01859 | -0.02106 | -0.02350 | -0.02612 | -0.02847 | -0.02606 | -0.01928 | -0.01547 | -0.00972 | -0.00513 | 0.00000 |
| _   | 12 | 0.00000       | -0.01066 | -0.01859 | -0.02086 | -0.02339 | -0.02600 | -0.02830 | -0.03106 | -0.03326 | -0.03118 | -0.02420 | -0.02053 | -0.01466 | -0.01020 | -0.00491 | 0.00000 |
|     | 13 | 0.00000       | -0.00950 | -0.02107 | -0.02819 | -0.03093 | -0.03310 | -0.03598 | -0.03807 | -0.03628 | -0.02917 | -0.02554 | -0.01966 | -0.01520 | -0.00988 | -0.00505 | 0.00000 |
|     | 14 | 0.00000       | -0.01034 | -0.01925 | -0.03130 | -0.03792 | -0.04089 | -0.04290 | -0.04134 | -0.03416 | -0.03051 | -0.02470 | -0.02017 | -0.01491 | -0.01004 | -0.00498 | 0.00000 |
|     | 15 | 0.00000       | -0.00980 | -0.02046 | -0.02918 | -0.04138 | -0.04776 | -0.04637 | -0.03919 | -0.03545 | -0.02978 | -0.02509 | -0.01998 | -0.01499 | -0.01002 | -0.00499 | 0.00000 |
|     | 16 | 0.00000       | -0.01009 | -0.01979 | -0.03042 | -0.03922 | -0.04713 | -0.04425 | -0.04036 | -0.03487 | -0.03000 | -0.02507 | -0.01991 | -0.01508 | -0.00994 | -0.00503 | 0.00000 |
|     | 17 | 0.00000       | -0.01000 | -0.02002 | -0.02989 | -0.03620 | -0.03608 | -0.04116 | -0.03998 | -0.03489 | -0.03016 | -0.02482 | -0.02016 | -0.01487 | -0.01009 | -0.00495 | 0.00000 |
|     | 18 | 0.00000       | -0.00993 | -0.02011 | -0.02592 | -0.02699 | -0.03004 | -0.03204 | -0.03582 | -0.03526 | -0.02974 | -0.02523 | -0.01981 | -0.01515 | -0.00990 | -0.00505 | 0.00000 |
|     | 19 | 0.00000       | -0.01010 | -0.01599 | -0.01737 | -0.01970 | -0.02298 | -0.02465 | -0.02747 | -0.03084 | -0.03030 | -0.02475 | -0.02020 | -0.01486 | -0.01010 | -0.00495 | 0.00000 |
|     | 20 | 0.00000       | -0.00620 | -0.00752 | -0.00973 | -0.01333 | -0.01436 | -0.01837 | -0.01965 | -0.02264 | -0.02603 | -0.02522 | -0.01983 | -0.01512 | -0.00992 | -0.00504 | 0.00000 |

Figura 13: Resultados para los primeros 20 intervalos



#### Desplazamiento de la cuerda

Figura 14: Comportamiento de la cuerda en los primeros 10 intervalos

# 5. Conclusiones

Se mostraron las soluciones a tres típicos problemas que involucran ecuaciones en derivadas parciales, todos resueltos a través de análisis numérico como una alternativa practica a los métodos analíticos. Las soluciones numéricas permiten involucrar mayor detalle sobre las variables que modelan el fenómeno, aunque suelen presentar problemas de estabilidad, los cuales se resuelven con la adecuada selección de los pasos  $\Delta$  para cada variable. Estos procesos son la base de simulaciones de fenómenos más complejos que reflejan de mejor forma las soluciones de la ingeniería a problemas reales.

# Notas

 $^1\mathrm{Las}$ figuras y gráficas incluidas en este trabajo fueron elaboradas por los autores

# Referencias

Borras, H., Duran, R., y Iriarte, R. (1984). Apuntes de métodos numéricos (F. de Ingeniería UNAM, Ed.).

Burden, R., y Faires, D. (2011). Análisis numérico (C. Learning, Ed.).

Chapra, S., y Canale, R. (2015). Métodos numéricos para ingenieros (M. Hill, Ed.).

García B., S. (2017). Métodos numéricos.

Gerald, C. (1991). Análisis numérico (Alfaomega, Ed.).

Gerald, C., y Wheatley, P. (2000). Análisis numérico con aplicaciones (P. Hall, Ed.).

Olivera Salazar, A. (s.f.). Métodos numéricos (Limusa, Ed.).

Sandoval, H. (2017). Métodos numéricos.

Zill, D. (1997). Ecuaciones diferenciales con valores en la frontera (M. G. Hill, Ed.).