TEMARIO PARA EXAMEN DE INGRESO AL POSGRADO EN INGENIERÍA MECÁNICA

CAMPO DISCIPLINARIO: MECATRÓNICA

DINÁMICA

- 1. CINÉTICA PLANA DE UN CUERPO RÍGIDO: Fuerza y Aceleración
 - a. Momentos de Inercia de Masa y Teoremas de Ejes Paralelos
 - b. Ecuaciones de Movimiento: Traslación
 - c. Ecuaciones de Movimiento: Rotación alrededor de un eje fijo
 - d. Ecuaciones de Movimiento: Movimiento Plano General
- 2. CINÉTICA PLANA DE UN CUERPO RÍGIDO: Trabajo y Energía
 - a. Energía Cinética
 - b. Principio del Trabajo y la Energía
 - c. Principio de la Conservación de la Energía
- 3. CINÉTICA PLANA DE UN CUERPO RÍGIDO: Impulso y Momentum
 - a. Momentum Lineal y Angular
 - b. Principio de Impulso y Momentum
 - c. Conservación del Momentum

Bibliografía

Hibbeler, R.C. (1997). Engineering Mechanics Dynamics. Prentice-Hall, 8th edition.

ANÁLISIS DE CIRCUITOS Y ELECTRÓNICA

Análisis de Circuitos

Métodos de Análisis de circuitos

- a. Mallas
- b. Nodos
- c. Transformación de fuentes
- d. Circuito Equivalente de Thevenin
- e. Circuito Equivalente de Norton
- f. Teorema de superposición

Electrónica

- 1. Circuitos con diodos
 - a. Rectificadores
- 2. Transistor como interruptor y como amplificador
- 3. Lógica combinacional
 - a. Algebra de Boole, funciones booleanas, tablas de verdad
 - b. Circuitos combinacionales
- 4. Lógica secuencial
 - a. Flip-flops
 - b. Diseño de circuitos secuenciales

Sistemas Electrónicos Lineales

- 1. Características del amplificador operacional
 - a. Ancho de banda
 - b. Razón de rechazo al modo común
 - c. Tasa de respuesta
 - d. Ganancia
- 2. Configuraciones comunes del amplificador operacional
- 3. Amplificador Operacional de Instrumentación

Bibliografía

Coughlin, R., Driscoll, F. and Alatorre Miguel, E. (1993). Amplificadores operacionales y circuitos integrados lineales. 1st ed. México: Prentice-Hall Hispanoamericana

Instrumentación electrónica

- 1. Sistema internacional de unidades
- 2. Errores
- 3. Sensores
- 4. Ruido

Bibliografía

➤ William David Cooper (1982), Instrumentación electrónica y mediciones, 2ª. Edición, México; Prentice Hall

Modelado y Control

- 1. Modelado de sistemas físicos.
 - a. Obtención de una ecuación diferencial y función de transferencia de un sistema físico
 - b. Definición de polos y ceros
- 2. Sistemas de control de lazo cerrado
 - a. Componentes y diagrama de bloques
 - b. Características de funcionamiento
- 3. Estabilidad: criterio de ubicación de polos.
- 4. Control PID
 - a. Aportación de cada término de un controlador PID
 - b. Fundamentos de diseño

Bibliografía

- Nise, N. (2005). Sistemas de control para ingeniería. Edit. CECSA. Tercera edición (primera edición en español).
- Ogata, K. (1998). Ingeniería de control moderna. Prentice Hall. Tercera edición